Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

D(t) → 1
D(constant) → 0
D(+(x, y)) → +(D(x), D(y))
D(*(x, y)) → +(*(y, D(x)), *(x, D(y)))
D(-(x, y)) → -(D(x), D(y))

Q is empty.


QTRS
  ↳ Overlay + Local Confluence

Q restricted rewrite system:
The TRS R consists of the following rules:

D(t) → 1
D(constant) → 0
D(+(x, y)) → +(D(x), D(y))
D(*(x, y)) → +(*(y, D(x)), *(x, D(y)))
D(-(x, y)) → -(D(x), D(y))

Q is empty.

The TRS is overlay and locally confluent. By [15] we can switch to innermost.

↳ QTRS
  ↳ Overlay + Local Confluence
QTRS
      ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

D(t) → 1
D(constant) → 0
D(+(x, y)) → +(D(x), D(y))
D(*(x, y)) → +(*(y, D(x)), *(x, D(y)))
D(-(x, y)) → -(D(x), D(y))

The set Q consists of the following terms:

D(t)
D(constant)
D(+(x0, x1))
D(*(x0, x1))
D(-(x0, x1))


Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

D1(*(x, y)) → D1(x)
D1(*(x, y)) → D1(y)
D1(+(x, y)) → D1(x)
D1(+(x, y)) → D1(y)
D1(-(x, y)) → D1(y)
D1(-(x, y)) → D1(x)

The TRS R consists of the following rules:

D(t) → 1
D(constant) → 0
D(+(x, y)) → +(D(x), D(y))
D(*(x, y)) → +(*(y, D(x)), *(x, D(y)))
D(-(x, y)) → -(D(x), D(y))

The set Q consists of the following terms:

D(t)
D(constant)
D(+(x0, x1))
D(*(x0, x1))
D(-(x0, x1))

We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
QDP
          ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

D1(*(x, y)) → D1(x)
D1(*(x, y)) → D1(y)
D1(+(x, y)) → D1(x)
D1(+(x, y)) → D1(y)
D1(-(x, y)) → D1(y)
D1(-(x, y)) → D1(x)

The TRS R consists of the following rules:

D(t) → 1
D(constant) → 0
D(+(x, y)) → +(D(x), D(y))
D(*(x, y)) → +(*(y, D(x)), *(x, D(y)))
D(-(x, y)) → -(D(x), D(y))

The set Q consists of the following terms:

D(t)
D(constant)
D(+(x0, x1))
D(*(x0, x1))
D(-(x0, x1))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


D1(*(x, y)) → D1(x)
D1(*(x, y)) → D1(y)
D1(+(x, y)) → D1(x)
D1(+(x, y)) → D1(y)
D1(-(x, y)) → D1(y)
D1(-(x, y)) → D1(x)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
D1(x1)  =  D1(x1)
*(x1, x2)  =  *(x1, x2)
+(x1, x2)  =  +(x1, x2)
-(x1, x2)  =  -(x1, x2)

Lexicographic path order with status [19].
Quasi-Precedence:
trivial

Status:
+2: [1,2]
-2: [2,1]
D^11: [1]
*2: [2,1]


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ QDPOrderProof
QDP
              ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

D(t) → 1
D(constant) → 0
D(+(x, y)) → +(D(x), D(y))
D(*(x, y)) → +(*(y, D(x)), *(x, D(y)))
D(-(x, y)) → -(D(x), D(y))

The set Q consists of the following terms:

D(t)
D(constant)
D(+(x0, x1))
D(*(x0, x1))
D(-(x0, x1))

We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.